Visit our sister company, HCF Autosport

HCF Brake Systems
HCF Brake Systems
  • Home
  • Products
  • Technology
  • Refurbishment
  • Bedding Procedure
  • FAQ
    • Home
    • Products
    • Technology
    • Refurbishment
    • Bedding Procedure
    • FAQ
  • Sign In
  • Create Account

  • Orders
  • My Account
  • Signed in as:

  • filler@godaddy.com


  • Orders
  • My Account
  • Sign out

Signed in as:

filler@godaddy.com

  • Home
  • Products
  • Technology
  • Refurbishment
  • Bedding Procedure
  • FAQ

Account


  • Orders
  • My Account
  • Sign out


  • Sign In
  • Orders
  • My Account
image612

Frequently Asked Questions

1. What are Ceramic brake pads? 


Ceramic brake systems in automotive applications do not generally use brake pads made in ceramic material.  A ceramic brake pad is too harsh and produces excessive wear, so in fact brake pads used with ceramic brake discs are made from organic compounds similar to those used with traditional iron brake discs.  However, as the frictional and thermal properties of iron and ceramic discs are significantly different it is important to use a brake pad compound that has been specifically developed for ceramic brake discs such as the Pagid RSC1.  Some high performance brake pads, designed for extreme track use, such as the Pagid RS29 can be used with both iron and ceramic discs.


2. Why would you use Ceramic brake pads?


Although ceramic material is not generally used for automotive brake pads, they are used in other areas such as aircraft and rail where the relative harshness is suited to the applications.


3. Why Carbon-Ceramic?


Weight savings of up to 70%

Improved handling and drivability

Improved NVH (less noise, vibration and harshness)

Improved performance (in both wet and dry conditions)

Reduced brake wear – giving increased life

Corrosion Free

Less brake dust


4. Which brake pads should you use with Ceramic discs?


Due to the different frictional and thermal properties of iron and ceramic discs it is important to use a brake pad compound that has been specifically developed for ceramic brake discs such as the Pagid RSC1.  Some high performance brake pads, designed for extreme track use, such as the Pagid RS29 can be used with both iron and ceramic discs.


5. How do you make a Carbon Ceramic disc?


The Carbon Ceramic brakes fitted as standard on many high performance vehicles are constructed in one of two ways – either a core of ceramic material reinforced with chopped carbon fiber with an additional ceramic layer on the friction surface or simply the core of ceramic material with chopped carbon fiber and no outer friction layer.  Surface Transforms use a different process, utilizing continuous carbon fiber to produce a carbon-carbon which is then infilitrated with carbon silicide before being machined to suit the application


6. What are ‘next-generation’ Carbon Ceramic brakes?


While the carbon-ceramic discs you find on production road cars use discontinuous (chopped) carbon fiber, ST’s next-generation technology interweaves continuous carbon fiber to form a 3D multi-directional matrix which has significant benefits over traditional carbon-ceramic products:

- Stronger and more durable product - lower weight construction

- 3 x heat conductivity - reduces brake temperature and improves performance

- Can be refurbished when traditional product is thrown away


These attributes make ST’s product ideally suited for the demanding nature of track days, providing ultimate performance for drivers that want to take their high performance road car on track and drive home afterwards.


7. Why not use a brake made from Carbon only?


Carbon-Carbon is recognized as the optimum brake material and is used in F1, but the brake performance it provides is too extreme for everyday use.  Carbon brakes only work effectively at elevated temperatures and do not provide sufficient or consistent levels of friction at low temperatures, therefore making them unsuitable for normal road car use.  Carbon Ceramic brakes have many of the benefits of Carbon-Carbon brakes, such as high performance and low weight, but also provide consistent braking throughout the range of everyday temperatures.


8. Is brake-bedding important and what does it mean?


In order for a brake system to work optimally, the brake disc and pads must be properly bedded-in.  Bedding-in, also called breaking-in or conditioning, is the process of depositing an even layer of brake pad material, also called the transfer layer, on the friction face of the brake disc (the surface between the pad and disc).

 

Bedding-in consists of heating a brake system to its operating temperature to allow the formation of the transfer layer and needs to be done in a controlled way to avoid uneven deposition, which is the number one cause of NVH (Noise, Vibration and Harshness).  This procedure is repeated in order to ensure that the entire friction face is evenly covered with brake pad material with cooling periods in between each heating cycle.

 

A certain amount of the pad-bedding process can be done off-line (pre-bedding) without the specific discs for that vehicle, this reduces the amount of in-vehicle bedding required.  So it is advisable when replacing your brake discs and pads to fit pre-bedded pads if available for your vehicle.


9. What is the life of Carbon Ceramic brakes?


While Carbon Ceramic brakes can last the lifetime of an unmodified street-driven vehicle, in track-use vehicles and modified street cars this is rarely true.  The Carbon Ceramic brakes fitted as standard on many high performance vehicles are not designed for the kind of driving that they may be subjected to.  Many drivers have been disappointed to find their carbon ceramic discs need to be replaced after only a few track sessions, and are surprised by their replacement cost from the OE supplier. 


ST’s next-generation carbon ceramic brake discs are designed for performance driving and the track day enthusiast.  Due to their increased durability and reduced operating temperature they are ideal for regular track use, while still performing on the road.


Disclaimer - all components are intended for off-road use and sold as-is, without any expressed or implied warranties of any kind.


Items ordered in error attract a 15% restocking fee.

Terms & Conditions can be found at the following link - Terms & Conditions.  


Copyright © 2021 HCF Brake Systems LLC - All Rights Reserved.